CHEMDUNN is moving and getting a facelift. Pack up your stuff and we'll see you at the new place!
Intermolecular Forces and Properties
3.2 Properties of Solids
Essential Knowledge:
*These are taken directly from College Board
Many properties of liquids and solids are determined by the strengths and types of intermolecular forces present. Because intermolecular interactions are broken when a substance vaporizes, the vapor pressure and boiling point are directly related to the strength of those interactions. Melting points also tend to correlate with interaction strength, but because the interactions are only rearranged, in melting, the relations can be more subtle (SAP-5.B.1)
Particulate-level representations, showing multiple interacting chemical species, are a useful means to communicate or understand how intermolecular interactions help to establish macroscopic properties. (SAP-5.B.2)
Due to strong interactions between ions, ionic solids tend to have low vapor pressures, high melting points, and high boiling points. They tend to be brittle due to the repulsion of like charges caused when one layer slides across another layer. They conduct electricity only when the ions are mobile, as when the ionic solid is melted or dissolved in water or another solvent. (SAP-5.B.3)
In covalent network solids, the atoms are covalently bonded together into a three dimensional network (e.g., diamond) or layers of two-dimensional networks (e.g., graphite). These are only formed from nonmetals: elemental (e.g., diamond, graphite) or binary compounds of two nonmetals (e.g., silicon dioxide and silicon carbide). Due to the strong covalent interactions, covalent solids have high melting points. Three-dimensional network solids are also rigid and hard, because the covalent bond angles are fixed. However, graphite is soft because adjacent layers can slide past each other relatively easily. (SAP-5.B.4)
Molecular solids are composed of distinct, individual units of covalently-bonded molecules attracted to each other through relatively weak intermolecular forces. Molecular solids generally have a low melting point because of the relatively weak intermolecular forces present between the molecules. They do not conduct electricity because their valence electrons are tightly held within the covalent bonds and the lone pairs of each constituent molecule. Molecular solids are sometimes composed of very large molecules or polymers.(SAP-5.B.5)
Metallic solids are good conductors of electricity and heat, due to the presence of free valence electrons. They also tend to be malleable and ductile, due to the ease with which the metal cores can rearrange their structure. In an interstitial alloy, interstitial atoms tend to make the lattice more rigid, decreasing malleability and ductility. Alloys typically retain a sea of mobile electrons and so remain conducting. (SAP-5.B.6)
In large biomolecules or polymers, noncovalent interactions may occur between different molecules or between different regions of the same large biomolecule. The functionality and properties of such molecules depend strongly on the shape of the molecule, which is largely dictated by noncovalent interactions. (SAP-5.B.7)
🔐 CHEMDUNN access required to view topic page below
Subscribe for full access to all content. Check out a free topic page for a preview.